Product catalyzes the deamidation of D145N dehalogenase to produce the wild-type enzyme.
نویسندگان
چکیده
Aspartate 145 plays an essential role in the active site of 4-chlorobenzoyl-CoA dehalogenase, forming a transient covalent link at the 4-position of the benzoate during the conversion of the substrate to 4-hydroxybenzoyl-CoA. Replacement of Asp 145 by residues such as alanine or serine results in total inactivation, and stable complexes can be formed with either substrate or product. The Raman spectroscopic characterization of some of the latter is described in the preceding publication (Dong et al.). The present work investigates complexes formed by D145N dehalogenase and substrate or product. Time-resolved absorption and Raman difference spectroscopic data show that these systems evolve rapidly with time. For the substrate complex, initially the absorption and Raman spectra show the signatures of the substrate bound in the active site of the asparagine 145 form of the enzyme but these signatures are accompanied by those for the ionized product. After several minutes these signatures disappear to be replaced with those closely resembling the un-ionized product in the active site of wild-type dehalogenase. Similarly, for the product complex, the absorption and Raman spectra initially show evidence for ionized product in the active site of D145N, but these are rapidly replaced by signatures closely resembling the un-ionized product bound to wild-type enzyme. It is proposed that product bound to the active site of asparagine 145 dehalogenase catalyzes the deamidation of the asparagine side chain to produce the wild-type aspartate 145. For the complexes involving substrate, the asparagine 145 enzyme population contains a small amount of the WT enzyme, formed by spontaneous deamidation, that produces product. In turn, these product molecules catalyze the deamidation of Asn 145 in the major enzyme population. Thus, conversions of substrate to product and of D145N to D145D dehalogenase go on simultaneously. The spontaneous deamidation of asparagine 145 has been characterized by allowing the enzyme to stand at RT in Hepes buffer at pH 7.5. Under these conditions deamidation occurs with a rate constant of 0.0024 h-1. The rate of product-catalyzed deamidation in Hepes buffer at 22 degrees C was measured by stopped-flow kinetics to be 0.024 s-1, 36000 times faster than the spontaneous process. A feature near 1570 cm-1 could be observed in the early Raman spectra of both substrate and product-enzyme complexes. This band is not associated with either substrate or product and is tentatively assigned to an ester-like species formed by the attack of the product's 4-O- group on the carbonyl of asparagine's side chain and the subsequent release of ammonia. A reaction scheme is proposed, incorporating these observations.
منابع مشابه
Bacterial DL-2-haloacid dehalogenase from Pseudomonas sp. strain 113: gene cloning and structural comparison with D- and L-2-haloacid dehalogenases.
DL-2-Haloacid dehalogenase from Pseudomonas sp. strain 113 (DL-DEX) catalyzes the hydrolytic dehalogenation of both D- and L-2-haloalkanoic acids to produce the corresponding L- and D-2-hydroxyalkanoic acids, respectively, with inversion of the C2 configuration. DL-DEX is a unique enzyme: it acts on the chiral carbon of the substrate and uses both enantiomers as equivalent substrates. We have i...
متن کاملReplacement of tryptophan residues in haloalkane dehalogenase reduces halide binding and catalytic activity.
Haloalkane dehalogenase catalyzes the hydrolytic cleavage of carbon-halogen bonds in short-chain haloalkanes. Two tryptophan residues of the enzyme (Trp125 and Trp175) form a halide-binding site in the active-site cavity, and were proposed to play a role in catalysis. The function of these residues was studied by replacing Trp125 with phenylalanine, glutamine or arginine and Trp175 by glutamine...
متن کاملIdentification of catalytic amino acids of cyclodextran glucanotransferase from Bacillus circulans T-3040.
In glycoside hydrolase family 66 (see http://afmb.cnrs-mrs.fr/CAZY/), cyclodextran glucanotransferase (CITase) is the only transglycosylation enzyme, all the other family 66 enzymes being dextranases. To analyze the catalytic amino acids of CITase, we modified CITase chemically from the T-3040 strain of Bacillus circulans with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). EDC inactivate...
متن کاملIdentification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.
4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolysis of 4-CBA-CoA to 4-hydroxybenzoyl-coenzyme A (4-HBA-CoA) via a nucleophilic aromatic substitution pathway involving the participation of an active site carboxylate side chain in covalent catalysis. In this paper we report on the identification of conserved aspartate, histidine, and tryptophan residues essential to 4-CBA...
متن کاملImproved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucida...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 38 13 شماره
صفحات -
تاریخ انتشار 1999